REACTIONS OF VINYLPHOSPHIRANES WITH METHYLENETRIMETHYLPHOSPHORANE

REINHARD BENN, RICHARD MYNOTT, WOLF JÜRGEN RICHTER* and GERHARD SCHROTH Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim/Ruhr, West Germany

(Received in Germany 24 October 1983)

Abstract—The reaction of methylenetrimethylphosphorane with isomeric mixtures of cis and trans 1-t-butyl- or 1-cyclohexyl-2-vinylphosphirane produce new phosphino-substituted phosphorus ylids via ring-opening and proton transfer. The products are fully characterized by NMR.

Although substituted phosphiranes can be prepared relatively easily, the chemistry of these compounds has received little attention¹⁻³. This may be due to several features that distinguish phosphiranes from most other phosphanes, for example, quaternation of the P atom leads to decomposition of the molecule and reaction with a wide variety of Lewis acids leads to olefin elimination or to polymerization. MeLi causes cleavage of the 3-membered ring.

Our recent discovery of an easy route to vinylphosphiranes⁴ encouraged us to study phosphiranes in more detail, in view of the expected stabilization of the ring system by the vinyl group. The metal-catalyzed rearrangement to substituted phospholenes has already been reported;⁵ here we present our results on the reaction of vinylphosphiranes with methylenetrimethylphosphorane.

RESULTS AND DISCUSSION

When solution of methylenetrimethylphosphorane in benzene, toluene or pentane is added to a solution of 1-t-butyl-2-vinylphosphirane (1) or 1-cyclohexyl-2-vinylphosphirane (2) a slightly exothermic reaction is observed. The 32 MHz-31-P NMR spectra of the isolated products from 1 or 2 show no signals between -170 and -190 ppm characteristic of the starting phosphiranes. In each case, two ABquartets with a large coupling of ca 146 Hz in the region of +2.3 and -24.9 ppm are observed. The mass spectra, which show a strong $(M - C_4H_7)^+$ fragmentation, are consistent with the formation of 1:1 adducts. The initially expected structure—a 5-membered ring containing two P atoms—was rejected after ¹H- and ¹³C-NMR studies, in favour of the two isomeric structures 3a and 3b from phosphirane 1 and 4a and 4b from compound 2. The NMR data, which are collected in Tables 1 and 2, are consistent with the assigned structures. The coupling constants ${}^{1}J_{P\beta C}$ to C_{1} and C_{2} and also ${}^{2}J_{P\beta H}$ to the methine proton on C2 are relatively large, as is characteristic for ylids, while ¹J_{PaC} to C₂, C₃ and C₇ and ²J_{PaH} to the methine proton are relatively small, and fall in the range expected for phosphines. Taken together they are indicative of a phosphino-substituted ylid.6 Furthermore, while the methine proton on C₂ shows no further proton-proton coupling, the diastereotopic protons on C₃ are coupled to the protons on C₄. This observation establishes that C₅ remains bonded to C₆ and

that ring opening has indeed occurred between P and the secondary C of 1 or 2, respectively.

The compounds 3 and 4 are probably produced by nucleophilic attack of the phosphorane on the P atom accompanied by ring-opening. This zwitterion reacts further by proton transfer from the methylene group (C-2) to either C-4 or C-6 of the butenylic anion to give two isomeric phosphoranes, one bearing a Z-buten-2-yl group, the other a buten-3-yl group on P. Both isomers are formed in roughly equal amounts, i.e., 2:3 for 3a and 3b and 3:2 for 4a and 4b irrespective of the isomeric ratio or the starting material. Thus the cis- and trans-phosphiranes must have undergone scrambling at the stage of butenyl anion formation.

The reaction of methylenetriphenylphosphorane with t-butylvinylphosphirane gives the analogous ylids 5a and 5b, which have been characterized by ³¹P-and ¹H-NMR. However, the reaction with the arylsubstituted ylid is still incomplete after stirring for 8 days at 20°. The highly strained hexamethylsilirane (hexamethylsilacyclopropane) is reported to react readily in a similar manner with methylenetrimethylphosphorane to give the Si substituted phosphorane Me₂CHCMe₂SiMe₂CH = PMe₃,⁸

Table 1. ¹H-NMR-data of 3-4; 400 MHz; T = 300 K. All chemical shifts vs TMS as internal standard; solvent [D₄] benzene

C6H11 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.4; Jp=12.4 0.97 Jp=0.4; Jp=12.4 .1; Jp=15.3 0.28 Jp=3.7; Jp=14.9 .8; Jp=0.5 not assigned .7; Jp=2.0 sssigned 5.88 Jp=5.2; Ju,5=10.5 5.83 Jp=3.0 5.83 Jp=3.0 5.83 Jp=3.0 5.83 Jp=3.2 Jp=0.8 Cyclohexylprotons not assigned
C6H11 3 5 5 6 Me3-Pg 4a 67% 6	0.96 Jp=0 0.14 Jp=4 1.56 Jp=6 1.69 Jp=6 6.15 6.15 5.19 tran 5.04 cis
Me ₃ C 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.95 Jp=0.5; Jp=12.3 0.18 Jp=3.5; Jp=14.6 [2.41 [2.29 5.79 Jp=5.5; Ju, 5=10.6 5.57 Jp=3.5 1.72 Jp=2.7 1.20 Jp=11.5
Me ₃ P ₆ 3 _a 5 ₆ 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.94 $^{3}V_{P_{2}^{-}}$ 0.5; $^{2}V_{P_{3}^{-}}$ 12.5 0.95 $^{1}V_{P_{2}^{-}}$ 0.5; $^{1}V_{P_{3}^{-}}$ 12.3 0.08 $^{2}V_{P_{2}^{-}}$ 3.5; $^{1}V_{P_{3}^{-}}$ 14.6 $^{1}V_{P_{2}^{-}}$ 3.5; $^{1}V_{P_{3}^{-}}$ 16.6 $^{1}V_{P_{2}^{-}}$ 3.5; $^{1}V_{P_{3}^{-}}$ 16.7 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.7 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.7 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.5 $^{1}V_{P_{3}^{-}}$ 3.6 $^{1}V_{P_{3}^{-}}$ 3.7 $^{1}V_{P_{3}^{-}}$ 3
NO	T 20 20 20 20 20 20 20 20 20 20 20 20 20

Table 2. ¹³C and ³¹P-NMR data of 3-4

	,	ı											I	i			_ nzene
	J_{CH}	129	150	126	5.5 153	7.8 153	125	127	126	8.0 128	9.7 126	128					J-Bei
44 ©	J. B.	7.1	17.3	9.6 24.0 126	5.5	7.8	0.9 125	0.14	17.7 126	8.0	9.7	1		-21.4	+1.6	147.1	nt[D
	Sc Mult Jec Jeg Joh	17.89 q 59.5 7.1 129	6.15 d 116.1 17.3 150	9.6	ı	ı	ı	8.2/10.14)127	ı	ı	ı	1		~	7	14	Solve
	Mult	p 6	5 a 1	4	o	4 d	٦ م	٦ م	4	4 5	4	£					e cid.
	Q	17.8		30.33 t 11.5/10.5 ^{d)} 126 30.34 t	0.7 15.0 127 129.60 d	21.1 151 122.14 d	13.51	39.61 d	34.14	29.31	28.04 t	27.59					enzen ric a
	\mathbf{J}_{CH}	59.6 7.0 129	150) 126	127	151	153	126	16.7 126	8.0 128	10.6 126	128					oydsc
	ည်	7.0	16.0	10.5ª	15.0	21.1	ı	5.8d)		8.0	10.6	ı		-24.9	+1.9	145.9	ent [
41 의	Sc Mult Jec Jes Jch		6.11 d 116.0 18.0 150 5.95 d 117.2 16.0 150	11.5/	0.7	ı	ł	8.6/6.8 ^{d)} 126	ı	ı	ł	1		`		7	Solve
	Mult	2 q	, p 5	4	6 t	ro cc	2 t	9	Š t	+2	7 t	7 t	Ì				TMS. 85% a
		17.9	5.9	30.3	31.4	141.7	13.12	40.36 d	31.03 t	29.31	28.07 t	27.57 t					rmal rm.1
	J_{CH}	59.5 7.3 128 17.92 q	150	8.9 16.9 c)	8.9 152 31.46 t	9.3 153 141.78 d	0.9 125	- 8.6	125								inte
	_г	7.3	18.0	16.9		9.3	0.9	9.8	14.2 125					-6.1	+2.0	146.5	e to
3₽	^ب کے	59.5	16.0	8.9	9.0	1	1	9.8	ı					'	+	14	lativ
	Mult		1 d	+	5 d	5 d	4	8	4 ,)			ts re
	Sc Mult Jac Jac Joh	17.8		27.7	130.6	121.95 d	13.41 q	29.18	27.6								Shif
	_{Јсн}	128	150	°	127		153		14.2 125 27.64 q								lical lical
	ာ <mark>န</mark> ြင့	7.0	17.4	10.9 14.0 c) 27.78 t	0.9 17.7 127 130.65 d	13.2 151	1	7.7	14.2					-9.5	+2.3	145.9	Chem
13a	Carbon & Mult Jac Jac Jch	59.7 7.0 128 17.89 q	5.75 a 117.4 17.4 150	10.9	6.0	ı	1	7.7	ı					'	+	14	a) 75.6 MHz, 313 K. Chemical Shifts relative to internal TMS. Solvent [D ₆]-Benzene b) 32.2 MHz, 311 K. Chemical Shifts relative to external 85% aqueous phosphoric acid. Solvent[D ₆]-Benzene
	Mult	17.93 q	5 a 1	27.42 t	¢	o o	e t	e 3	4								Hz, 3
a)	δ _c	17.9	5.7	27.4	32.10 t	41.80 a	13.06	28.56	27.64 q								2.5 M
13 _C a)	arbon No	_	8	1 0	4		9	7	œ		16,6	101	31 _p b	Pa	P _A	2 PP	a) 75 b) 35

- (

demonstrating the stereochemical analogy between small ring compounds of P and Si. On the other hand, we found that the substituted vinylphosphiranes 1 and 2 did not react with water, methanol, CCl₄, and diazomethane—unlike the siliranes, which give ring-opening reactions with all of these reagents.

EXPERIMENTAL

Reaction of 1 with methylenetrimethylphosphorane. 1-t-Butyl-2-vinylphosphirane (1), 0.45 g (3.2 mmol) was dissolved in 15 ml of pentane under argon. This soln was cooled to 0° and $0.29 \, g$ (3.2 mmol) of methylenetrimethylphosphorane in 5 ml of pentane was then added dropwise. The mixture was noted to turn yellow. which faded after stirring overnight. After 16 hr, the solvent was removed, leaving a slightly yellow oil. Bulb-to-bulb distillation at 93-95°/0.001 mm Hg gave 0.6 g (85%) of (t-butylbuten-3-ylphosphinometylene)-trimethylphosphorane and its buten-2-yl isomer 3b. 1H- and 13C-NMR: see Tables 1 and 2, IR $(20 \,\mu)$ (cm⁻¹): ν (P=C) 1155, ν (C=C) 1635; MS $(70 \text{ eV}) \ m/e \ (\text{rel. intensity}): 232 \ (5\%), 177 \ (70\%), 175 \ (80\%),$ 121 (100%), 77 (60%), 76 (55%). (Found: C, 62.08; H, 11.16; P, 26.65. Calc for: C₁₂H₂₆P₂ (232.34) C, 62.03; H, 11.28; P, 26.68%).

Reaction of 2 with methylenetrimethylphosphorane. 1-Cyclohexyl-2-vinylphosphirane, 0.86 g (5.1 mmol) and 0.46 g (5.1 mmol) of methylenetrimethylphosphorane gave after distillation at $98^{\circ} - 100^{\circ}/0.001$ mm Hg 1.2 g (90%) of 4a and its buten-2-yl isomer 4b. IR (20μ) (cm⁻¹): ν (P=C) 1155, ν (C=C) 1635; MS (70 eV) m/e (rel. intensity): 258 (5%), 203 (30%), 175 (40%), 121 (100%), 76 (30%). Found: C, 64.98; H, 10.85; P, 24.05. Calc for $C_{14}H_{28}P_2$ (258.37): C, 65 07: H 10 92: P 24.00%)

65.07; H, 10.92; P, 24.00%).

Reaction of 1 with methylenetriphenylphosphorane.
1-t-Butyl-2-vinylphosphirane, 0.20 g (1.4 mmol), and 0.39 g (1.4 mmol) of methylenetriphenylphosphorane in 20 ml of pentane yielded after 6 d at room temp, ~0.5 g of 5a and its buten-2-yl isomer 5b as an orange, viscous oil. Com-

pounds 5a and 5b were found to decompose on distillation. The ^{31}P -NMR spectra of the crude products showed unreacted 1 to be present; $\delta_P = -170.6$ ppm. ^{31}P -NMR (C_6D_6): -9.4 and 21.5 ppm. $^{2}J_{pp}$: 131.8 Hz (5a); -6.5 and 21.0 ppm. $^{2}J_{pp}$: 133.3 Hz (5b), 5a: 5b = 8:5, ^{1}H -NMR (C_6D_6) 1.0, 2s (2H, P=CH), 1.13, 1.14, 2d (18H, C(CH₃)₃, $J_p = 11$ Hz), ~ 1.7 , m (CH₃,CH₂), ~ 2.3 , m (CH₂), 5.0, m (4H, =CH₂), 5.55, m (4H, HC=CH), 6.05, m (2H, CH=), 7.1, 7.72, m (30H, C_6H_3); IR (neat) (cm⁻¹): ν (P=C) 1155, ν (C=C) 1635, ν (CH=CH₂) 910, 995; MS (70 eV) m/e (rel. intensity): 418 (3%), 361 (100%), 307 (50%), 262 (20%), 183 (50%), 108 (20%). $C_{27}H_{32}P_2$ (418.55)

Reaction of 1 with diazomethane. A soln of 1.75 mmol of 1 in 20 ml of pentane was added dropwise to 1.75 mmol of diazomethane dissolved in 5 ml of pentane. Very little N_2 evolution was observed. After stirring overnight the pentane was removed yielding a residue of essentially pure unreacted 1, which was readily determined by ^{31}P - and ^{1}H -NMR.

Reaction of 1 with water, methanol or CCl₄, Solns of 1 in d₄-MeOH, MeOH/D₂O, or CCl₄/C₆D₆ were heated in sealed NMR tubes to 50°. No reaction was observed.

REFERENCES

- ¹R. I. Wagner, Le Vern D. Freeman, H. Goldwhite and D. G. Rowsell, J. Am. Chem. Soc. 89, 1102 (1967).
- ²S. Chan, H. Goldwhite, H. Keyzer, D. G. Rowsell and R. Tang, *Tetrahedron* 25, 1097 (1967).
- ³D. B. Denney and L. Sh. Shih, J. Am. Chem. Soc. 96, 317 (1974).
- ⁴W. J. Richter, Angew. Chem. **94**, 298 (1982); *Ibid.* Int. Ed. Engl. **21**, 292, (1982); *Ibid.* Suppl. 739 (1982).
- ⁵W. J. Richter, Chem. Ber. 116, 3293 (1983).
- ⁶R. K. Harris, J. R. Woplin, K. Issleib and R. Lindner, J. Magn. Reson 7, 291 (1972).
- ⁷H. Schmidbauer and A. Wohlleben-Hammer, *Chem. Ber.* 112, 510 (1979).
- ⁸D. Seyferth, D. P. Duncan, H. Schmidbauer and P. Holl, J. Organomet. Chem. 159, 137 (1978).